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Design and Analysis of Piezoelectric Cantilevers with Enhanced Higher
Eigenmodes for Atomic Force Microscopy

Steven I. Moore1, Michael G. Ruppert1 and Yuen K. Yong1

Abstract— Atomic force microscope (AFM) cantilevers with
integrated actuation and sensing provide several distinct ad-
vantages over conventional cantilever instrumentation such as
clean frequency responses, the possibility of down-scaling and
parallelization to cantilever arrays as well as the absence of opti-
cal interferences. However, for multifrequency AFM techniques
involving higher eigenmodes of the cantilever, optimization
of the transducer location and layout has to be taken into
account. This work proposes multiple integrated piezoelectric
regions on the cantilever which maximize the deflection of the
cantilever and the piezoelectric charge response for a given
higher eigenmode based on the spatial strain distribution. Finite
element analysis is performed to find the optimal transducer
topology and experimental results are presented which highlight
an actuation gain improvement up to 42 dB on the third mode
and sensor sensitivity improvement up to 38 dB on the second
mode.

Index Terms— Design/control of MEMS-nano devices; Micro-
Electro-Mechanical Systems; Applications of nano technology

I. INTRODUCTION
The atomic force microscope [1] has established itself as

a sophisticated instrument to study a variety of samples,
ranging from soft materials, like DNA, cells, proteins and
polymers to stiff materials such as silicon and graphite [2].

At the heart of the AFM, a microcantilever with a sharp
tip interrogates the surface of a sample to create a 3D
image of its topography. Moreover, dynamic modes where
the cantilever is actively driven at its first resonance fre-
quency, enables gentle interaction forces [3], specifically
for the investigation of biologically-relevant samples. For
these modes, the observed change in the amplitude of the
cantilever’s oscillation signal is commonly used to provide
the feedback signal for the z-axis control loop; the controller
output is used to map the topography of the sample.

In order to go beyond the study of the sample’s to-
pography, excitation and detection with a number of fre-
quencies was shown to lead to a significant improvement
for nanomechanical characterization [4]. Specifically, higher
order eigenmodes of the cantilever provide enhanced imaging
properties such as a higher modal stiffness and a faster
response time [5] and when used in multimodal imaging were
shown to be more sensitive to material properties [6]–[8].

The need for clean cantilever actuation becomes apparent
since additional resonances introduced by the commonly
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used piezoelectric stack actuator at the base of the cantilever
yields highly distorted frequency responses. This fact makes
higher mode identification and analysis exceedingly difficult.
As such, a number of integrated actuation methods including
photothermal [9], resistive thermal [10] or via a piezoelectric
layer [11] have been successfully employed.

The optical beam deflection method [12] is still considered
the widely used standard for measuring the cantilever oscilla-
tion mostly owing to its low noise characteristics [13]. How-
ever, the method comes with practical limitations such as
frequent laser alignment and fundamental limitations in terms
of the minimum laser spot size which requires minimum
cantilever dimensions [14]. Therefore, integrated sensing
methodologies such as piezoresistive [15]–[17] and piezo-
electric [18]–[20] techniques are of great interest largely due
to their smaller footprints and advantages in scalability [21].

Piezoelectric transduction seems particularly promising
due to the inherent capability to serve as both an actuator and
sensor even with a single active layer [22]–[24]. However,
previously proposed cantilever designs only employ a single
piezoelectric layer [25]–[27] which is not optimized to be
used for sensing higher order modes. While it was recently
shown that these modes can still be sensed with appropriate
signal conditioning [28], their observability depends strongly
on the location and layout of the piezoelectric layer.

This work outlines the design of a piezoelectric layer
topology for AFM cantilevers in order to maximize the actu-
ator gain and sensor sensitivity for higher order eigenmodes.
Mindlin plate theory and finite element analysis is employed
from which the spatial distribution of the strain for a given
higher mode is determined. As a result, the piezoelectric
layer is split into multiple isolated areas such that the
response from regions with equal polarity are constructively
combined to maximize the actuator gain and sensor output
for higher order flexural and torsional eigenmodes.

II. MODAL ANALYSIS OF THE PIEZOELECTRIC
CANTILEVER

The fundamental cantilever geometry analyzed in this
work is shown in Fig. 1. The stepped rectangular design has
the benefit of closely spaced higher eigenmodes compared
to rectangular cantilever shapes [29] as well as amplified
higher mode deflections [30]. A finite element (FE) model
is developed for modal analysis using Mindlin plate theory to
model the cantilever [31]. The piezoelectric layer is assumed
to be thin compared to the silicon layer.

When the cantilever is deflected, a charge is produced,
which can be calculated as the integral of the electric
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Fig. 1. Schematic of the basic cantilever shape and dimensions. The
zoomed in section of the plate shows the out-of-plane deflection w and
the rotation of the normal of the cantilever’s neutral plane (N.P.) about the
y-axis θy as well as the resulting in-plane strain in the x-direction.

displacement D3 [32]

q(t) =

∫∫
A

D3 dA, (1)

where A is the area of the piezoelectric layer. The electrodes
are uniformly distributed on both sides of the piezoelectric
layer, the piezoelectric material is homogeneous and only
poled along the z-axis. Therefore, the electric displacement
in the piezoelectric material with only non-zero components
can be stated as [32], [33]

D3 = d31εxx + d32εyy, (2)

where d31 = d32 = dp are the piezoelectric coefficients
and εxx/yy are the surface strains along the x- and y-axis,
respectively (compare Fig. 1).

The modal analysis based on the FE model provides the
solutions in terms of the out-of-plane deflection w(x, y, t) as
well as the rotations of the normal of the cantilever’s neutral
plane around the x-axis θx(x, y, t) and y-axis θy(x, y, t),
respectively. Since the piezoelectric layer is assumed to
be thin compared to the silicon layer, the response of the
piezoelectric transducer is proportional to the surface strains
of the cantilever which are stated as a function of the
rotations as [34]

εxx =
h

2

∂θy
∂x

,

εyy = −h
2

∂θx
∂y

. (3)

Substituting (3) and (2) into (1) yields

q(t) =
dh

2

∫
y

∫
x

∂θy
∂x

− ∂θx
∂y

dxdy. (4)

A common approach to solve for the rotations θx and
θy is to assume that the solution can be represented by
separable space and time functions representing the mode

shapes φx(x, y) and φy(x, y) and modal coordinates u(t)
[35]:

θx(x, y, t) = u(t)φx(x, y),

θy(x, y, t) = u(t)φy(x, y). (5)

When the area from (1) is restricted to the area Ae of a single
rectangular element from the FE mesh, the modal analysis
calculates the rotations θex and θey at the four nodes of the
element. Then, the mode shapes over an element are

φex(x, y) = NT (x, y)θex,

φey(x, y) = NT (x, y)θey (6)

where N(x, y) are the shape functions [31], [34]

N(x, y) =


1
4 (1 − x

a )(1 − y
b )

1
4 (1 + x

a )(1 − y
b )

1
4 (1 + x

a )(1 + y
b )

1
4 (1 − x

a )(1 + y
b )

 (7)

with the dimensions of a rectangular element being 2a× 2b
and its origin placed at the center. Substituting the mode
shapes into (4), the charge response of the piezoelectric
transducer over a single FE element is found to be

qe(t) = u(t)
dph

2

∫∫
Ae

∂N

∂y
θex − ∂N

∂x
θey dxdy. (8)

Since the shape functions are quadratic in x and y, the
derivatives are linear. Hence, the integral can be evaluated
exactly using Gaussian quadrature at the midpoint of the
element. Evaluating qe for each element of a piezoelectric
transducer and summing over the entire cantilever provides
the overall charge response for a given eigenmode.

III. MULTIMODAL CANTILEVER DESIGNS

First, modal analysis is performed on the cantilever ge-
ometry shown in Fig. 1 using the finite element method. For
the FE analysis, an elastic modulus of 169GPa, density of
2500kgm−3 and Poisson’s ratio of 0.29 were assumed as the
material properties of the silicon. The resulting simulated
mode shapes of the first four modes of the cantilever are
shown in Section 2 (a)-(d). The modal frequencies are
38.3kHz, 119kHz, 176kHz, and 342kHz.

Second, the piezoelectric layer configuration for each
mode is found by calculating the integral in (8) for every ele-
ment in the mesh. If the sign of the integral for two neighbor-
ing elements is the same, their responses add constructively
otherwise destructively. Consequently, the piezoelectric layer
is split into a positive and a negative transducer shown in
Fig. 2(e)-(h) which are actuated and sensed with opposite
polarities. For flexural modes, the strain εxx dominates the
charge response whereas the strain εyy is insignificant over
most parts of the cantilever. However, near the cantilever tip
the opposite occurs which causes the small electrodes seen
in Fig. 2 (e),(f) and (h).

The piezoelectric cantilever designs were fabricated using
the PiezoMUMPs fabrication process by MEMSCAP [36]
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Fig. 2. (a)-(d) The first four mode shapes of the cantilever from the FE model. (e)-(f) The piezoelectric arrangement to maximize the response of the
transducer to each mode. The gray electrodes induce a charge in the opposite polarity to the black electrodes. (m)-(p) The fabricated cantilever designs.

and are shown in Fig. 2 (i)-(l). The thickness of the single-
crystal-silicon device layer is 10µm with a 0.5µm layer
of AlN and a 1µm layer of Aluminum for electrical con-
nections. A limitation of the PiezoMUMPs process is the
inability to fabricate tips, preventing the demonstration of
AFM imaging using the proposed designs. The authors are
currently working on post-fabricating tips using focused ion
beam deposition [37], [38].

Since the mechanical modeling neglects the piezoelectric
material and in order to account for fabrication tolerances,
the design routine was executed with large parameter varia-
tions. It was found that the mode shapes and thus the shape of
the piezoelectric transducers is invariant to variations in the
density of 1000−4000kgm−3, elasticities of 120−280GPa,
for Poisson’s ratio of 0.2−0.4 and for a silicon thickness of
8 − 15µm.

IV. INSTRUMENTATION

A. Instrumentation Design

The microfabrication process used results in a common
terminal between all piezoelectric transducers [36]. In order
to achieve electrical isolation, the common node has to be
grounded and the actuation and sensing circuits have to
be applied to a grounded load. This is achieved with a

grounded load charge sensor as shown in Fig. 3 where the
voltage across each piezoelectric area serves as actuation.
The driving op-amp maintains the input signal Vi across
each piezoelectric layer and the charge generated by the
strain dependent voltage source Vp is measured across a
reference capacitor Cs with a differential amplifier. A FET
input op-amp (TI, OPA656) is used to buffer the piezoelectric
transducer. The component values of the circuit elements
used are Cs = 10pF, Rs = 1MΩ and Rp = 10MΩ.

B. Instrumentation Modeling

A voltage applied to the electrodes of a piezoelectric layer
results in a bending moment causing the cantilever to deflect.
The transfer function from actuation voltage Vi(s) to tip
displacement D(s) can be described by a sum of n second
order modes [32]

Gdv(s) =
D(s)

Vi(s)
=

n∑
i=1

Gi
dv(s) =

n∑
i=1

αiω
2
i

s2 + ωi

Qi
s+ ω2

i

, (9)

where each second order term is characterized in terms of
the resonance frequency ωi, quality factor Qi, and gain αi.
When the cantilever deflects, the strain on the surface of the
piezoelectric transducer induces a charge on its electrodes
which can be modeled as a strain dependent voltage source
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Fig. 4. The experimental setup to characterize the cantilever designs.

Vp(s) in series with the piezoelectric capacitance Cp as
shown in Fig. 3. The transfer function from the actuation
voltage to the piezoelectric voltage is [32]

Gvv(s) =
Vp(s)

Vi(s)
=

n∑
i=1

δiG
i
dv(s). (10)

and the transfer function from actuation voltage to charge
Q(s) can be found to be [28]

Gqv(s) =
Q(s)

Vi(s)
= Cp + CpGvv(s). (11)

Notice, that there are two charge terms in this transfer
function, one associated with feedthrough from the actuation
voltage and one associated with the motion of the cantilever.
As such, the output of the self-sensing instrumentation circuit
is

Vo(s) =
Rs(sCpRp + 1)

Rp(sCsRs + 1)
Vi(s) +

sCpRs

sCsRs + 1
Vp(s). (12)

The resistance Rp and Rs are chosen such that the pole at
1/2πRsCs and zero at 1/2πRpCp are much lower than the
resonance frequencies of the cantilever. Then for frequencies
in the pass band, the output voltage can be simplified to

Vo(s) =
Cp

Cs
Vi(s) +

Cp

Cs
Vp(s). (13)

Since generally Vi(s) � Vp(s), the feedthrough component
almost entirely conceals the motional component. Therefore,
in order to used the piezoelectric transducer for self-sensing
the feedthrough has to be canceled in real-time to maximize
the dynamic range of the sensor. This can be achieved
with feedforward compensators implemented on Field Pro-
grammable Analog Arrays as prototyping systems [23] or in
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Fig. 5. Magnitude frequency responses of the cantilevers C1-C4 from input
voltage Vi to displacement d measured with the laser Doppler vibrometer.
The flexural modes of C1, C2, and C4 are measured at location 1 (L1) while
the torsional mode M3 is measured at location 2 (L2) (compare Fig. 2(i)).

TABLE I
ACTUATION GAIN OF THE REFERENCE CANTILEVER C1 AND THE

OPTIMIZED CANTILEVERS C2-C4: MAGNITUDE OF DISPLACEMENT

RESPONSES (Vi −→ d).

Mode Ref. Gain [µm/V] Opt. Gain [µm/V] ∆ Gain [dB]

M1 (C1) 16.97 - -

M2 (C1) 2.968× 10−1 (C2) 3.125 20.45

M3 (C1) 1.522× 10−2 (C3) 1.927 42.05

M4 (C1) 2.667× 10−1 (C4) 8.475× 10−1 10.04

analog [28]. Here, the feedthrough is estimated and removed
offline to demonstrate the sensor sensitivity increase of the
fabricated tip-less cantilevers.

V. EXPERIMENTAL RESULTS

A. Experimental setup

The experimental setup in order to characterize the can-
tilever designs is shown in Fig. 4. The displacement re-
sponses from Vi to d for each mode are measured with
a laser Doppler vibrometer (Polytec MSA-400) at two lo-
cations which are shown in Fig. 2 (i). Two differentially
driven instrumentation circuits are connected to the positive
and negative transducer and their respective responses are
combined constructively to yield Vo. The feedthrough com-
ponent is removed offline by fitting a third order transfer
function to the measured response over a small frequency
band around each resonance. This model accounts for a
second order mechanical system according to (9) and a first
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C4 are shifted to 0dB to account for different Cp values of each cantilever.

TABLE II
PARAMETERS OF THE IDENTIFIED TRANSFER FUNCTIONS.

Cp/Cs Qi fi [kHz] δiαi

C1 (M1) 5.433 408.6 43.92 1.395× 10−3

C1 (M2) 5.716 316.6 133.5 9.630× 10−6

C1 (M4) 5.756 358.9 402.9 7.074× 10−5

C2 (M2) 8.698 309.0 130.7 5.545× 10−4

C3 (M3) 6.718 608.9 175.9 1.761× 10−4

C4 (M4) 6.728 381.0 404.3 4.144× 10−4

order feedthrough system according to (12). The identified
feedthrough is subtracted from the measurements to produce
the sensor response without feedthrough, i.e. from Vi to Vd.

B. Discussion

The improvement in actuation gain at the resonance fre-
quencies of the optimized piezoelectric layer topologies is
evaluated from the measured frequency responses from Vi to
d shown in Fig. 5; the magnitudes at each mode are stated in
Table I. From the response, the resonance frequencies of the
first four modes of the reference C1 cantilever are found to be
44.02kHz, 133.7kHz, 186.8kHz and 402.9kHz, respectively.
Fabrication tolerances and the negligence of the piezoelectric
layer in the FE analysis account for the frequency differences
compared to the FE model in Section III. From Fig. 5 it can
be seen that compared to the reference cantilever C1, the
actuation gain is increased by 20.45dB for C2 at mode 2,
42.05dB for C3 at mode 3 and 10.04dB for C4 at mode 4.

The increase in sensor sensitivity using the proposed
self-sensing instrumentation is assessed by measuring the
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Fig. 7. Magnitude frequency responses of the cantilevers C1-C4 from Vi
to sensor output Vd after feedthrough cancellation.

TABLE III
SENSITIVITIES OF THE REFERENCE CANTILEVER C1 AND THE

OPTIMIZED CANTILEVERS C2-C4: MAGNITUDE OF SENSOR RESPONSES

WITHOUT FEEDTHROUGH (Vi −→ Vd).

Mode Ref. Gain [V V −1] Opt. Gain [V V −1] ∆ Gain [dB]

M1 (C1) 3.265 - -

M2 (C1) 1.910× 10−2 (C2) 1.514 37.98

M3 - (C3) 7.247× 10−1 -

M4 (C1) 1.471× 10−1 (C4) 1.061 17.16

frequency response from input voltage Vi to sensor output
voltage Vo and is shown in Fig. 6. For the unoptimized
reference cantilever C1 and due to substantial feedthrough,
the higher order modes M2 and M4 are barely noticeable
and M3 is entirely unobservable. In contrast, the optimized
higher mode cantilevers C2-C4 clearly show the resonances.

The gain in sensitivity is attained by fitting the third order
transfer functions (13) to the response in Fig. 6 around
the resonances; the parameters are stated in Table II. The
discrepancy from the ideal second order response is due to
residual feedthrough originating from unmodeled parasitic
capacitances in the MEMS device and read-out circuit. From
the fit, the feedthrough Cp/Cs is identified (compare Table
II) and subtracted to yield the magnitude responses from
input voltage Vi to sensor output Vd shown in Fig. 7.
Compared to C1, the sensitivity is increased by 37.98dB for
C2 at mode 2 and 17.16dB for C4 at mode 4 (compare Table
III). Note, that C3 enables measurement of the torsional
mode, which was unobservable for C1.



VI. CONCLUSIONS

AFM cantilevers with integrated piezoelectric layers are
versatile transducers due to their self-actuating and self-
sensing capability. However, for applications in multifre-
quency AFM, the electrode layout has to be optimized in
order to properly excite and sense higher order eigenmodes
of the cantilever. In this work, we provide a systematic way
of splitting up the piezoelectric layer into several transducers,
whose individual responses are constructively combined to
yield increased actuator gain and sensor sensitivity on higher
modes. The required instrumentation for the resulting three
terminal piezoelectric device is realized with a grounded
load charge sensor. The experimental results highlight an
improvement in actuation gain of up to 42 dB on the third
mode, sensitivity increase of up to 38 dB on the second mode
and strong observation of torsional modes compared to an
unoptimized electrode layout. Future work will focus on the
fabrication of tips for high-resolution multimodal AFM.
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